228 research outputs found

    Residual effect of nitrogen levels and weed control methods on growth, yield and economics of wheat grown after rice

    Get PDF
    A field experiment was laid out in split plot design on residual effect of treatments comprising three nitrogen levels viz. N75 (N1), N100 (N2) and N125 (N3) in main-plot treatments and seven weed control treatments viz. (W1-butachlor + 1 Hand Weeding, W2-butachlor + 2 Mechanical Weeding, W3-butachlor + 2,4-D, W4-bispyribac sodium, W5-butachlor + bispyribac sodium, W6-HW-2, W7- control) as sub-plot treatments conducted during 2015-16 and 2016-17 at the Rajaula Agriculture Farm, MGCGVV, Satna (M.P.) to study the residual effect of N-levels and weed control methods on growth, yield and economics of wheat grown after rice. In case of succeeding wheat, the residual 125 kg N/ha performed the best with respect to growth, yield-attributes with the result 31.11 q/ha grain yield and Rs.33509/ha income. While, under sub plot treatments, Hand weedings two times were recorded significant grain yield (28.66 q/ha) and straw yield (38.17 q/ha) at (P <0.05) over control. However it was found non-significant different and also noticed higher over rest treatments. In this succession, Butachlor + 2, 4-D (0.80 kg/ha) was higher but in second position and similar trend was observed in successive way with rest of treatments

    Calcium signals can freely cross the nuclear envelope in hippocampal neurons: somatic calcium increases generate nuclear calcium transients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In hippocampal neurons, nuclear calcium signaling is important for learning- and neuronal survival-associated gene expression. However, it is unknown whether calcium signals generated by neuronal activity at the cell membrane and propagated to the soma can unrestrictedly cross the nuclear envelope to invade the nucleus. The nuclear envelope, which allows ion transit via the nuclear pore complex, may represent a barrier for calcium and has been suggested to insulate the nucleus from activity-induced cytoplasmic calcium transients in some cell types.</p> <p>Results</p> <p>Using laser-assisted uncaging of caged calcium compounds in defined sub-cellular domains, we show here that the nuclear compartment border does not represent a barrier for calcium signals in hippocampal neurons. Although passive diffusion of molecules between the cytosol and the nucleoplasm may be modulated through changes in conformational state of the nuclear pore complex, we found no evidence for a gating mechanism for calcium movement across the nuclear border.</p> <p>Conclusion</p> <p>Thus, the nuclear envelope does not spatially restrict calcium transients to the somatic cytosol but allows calcium signals to freely enter the cell nucleus to trigger genomic events.</p

    Reduction of claustrophobia during magnetic resonance imaging: methods and design of the "CLAUSTRO" randomized controlled trial

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Magnetic resonance (MR) imaging has been described as the most important medical innovation in the last 25 years. Over 80 million MR procedures are now performed each year and on average 2.3% (95% confidence interval: 2.0 to 2.5%) of all patients scheduled for MR imaging suffer from claustrophobia. Thus, prevention of MR imaging by claustrophobia is a common problem and approximately 2,000,000 MR procedures worldwide cannot be completed due to this situation. Patients with claustrophobic anxiety are more likely to be frightened and experience a feeling of confinement or being closed in during MR imaging. In these patients, conscious sedation and additional sequences (after sedation) may be necessary to complete the examinations. Further improvements in MR design appear to be essential to alleviate this situation and broaden the applicability of MR imaging. A more open scanner configuration might help reduce claustrophobic reactions while maintaining image quality and diagnostic accuracy.</p> <p>Methods/Design</p> <p>We propose to analyze the rate of claustrophobic reactions, clinical utility, image quality, patient acceptance, and cost-effectiveness of an open MR scanner in a randomized comparison with a recently designed short-bore but closed scanner with 97% noise reduction. The primary aim of this study is thus to determine whether an open MR scanner can reduce claustrophobic reactions, thereby enabling more examinations of claustrophobic patients without incurring the safety issues associated with conscious sedation. In this manuscript we detail the methods and design of the prospective "CLAUSTRO" trial.</p> <p>Discussion</p> <p>This randomized controlled trial will be the first direct comparison of open vertical and closed short-bore MR systems in regards to claustrophobia and image quality as well as diagnostic utility.</p> <p>Trial Registration</p> <p>ClinicalTrials.gov: <a href="http://www.clinicaltrials.gov/ct2/show/NCT00715806">NCT00715806</a></p

    Synthesis and Evaluation of 99mTc-Labelled Monoclonal Antibody 1D09C3 for Molecular Imaging of Major Histocompatibility Complex Class II Protein Expression

    Get PDF
    Purpose: It is known that major histocompatibility complex class II protein HLA-DR is highly expressed in B-cell lymphomas and in a variety of autoimmune and inflammatory diseases. Therefore, a radiolabelled fully humanized IgG4 monoclonal antibody (mAb) can provide useful prognostic and diagnostic information. Aims of the present study were to radiolabel an anti-HLA-DR mAb with technetium-99m and to evaluate its binding specificity, tissue distribution and targeting potential. Procedures: For labelling, we compared a direct method, after 2-mercaptoethanol (2-ME) reduction of disulphide bonds, with a two-step labelling method, using a heterobifunctional succinimidyl-6-hydrazinonicotinate hydrochloride chelator. Several in vitro quality controls and in vivo experiments in mice were performed. Results: We obtained highest labelling efficiency (LE, 998%) and specific activity (SA; 5,550 MBq/mg) via the direct method. In vitro quality control showed good stability, structural integrity and retention of the binding properties of the labelled mAb. The biodistribution in mice showed high and persistent uptake in spleen and suggests kidney and liver-mediated clearanc

    A novel TOPSIS–CBR goal programming approach to sustainable healthcare treatment

    Get PDF
    Cancer is one of the most common diseases worldwide and its treatment is a complex and time-consuming process. Specifically, prostate cancer as the most common cancer among male population has received the attentions of many researchers. Oncologists and medical physicists usually rely on their past experience and expertise to prescribe the dose plan for cancer treatment. The main objective of dose planning process is to deliver high dose to the cancerous cells and simultaneously minimize the side effects of the treatment. In this article, a novel TOPSIS case based reasoning goal-programming approach has been proposed to optimize the dose plan for prostate cancer treatment. Firstly, a hybrid retrieval process TOPSIS–CBR [technique for order preference by similarity to ideal solution (TOPSIS) and case based reasoning (CBR)] is used to capture the expertise and experience of oncologists. Thereafter, the dose plans of retrieved cases are adjusted using goal-programming mathematical model. This approach will not only help oncologists to make a better trade-off between different conflicting decision making criteria but will also deliver a high dose to the cancerous cells with minimal and necessary effect on surrounding organs at risk. The efficacy of proposed method is tested on a real data set collected from Nottingham City Hospital using leave-one-out strategy. In most of the cases treatment plans generated by the proposed method is coherent with the dose plan prescribed by an experienced oncologist or even better. Developed decision support system can assist both new and experienced oncologists in the treatment planning process

    Novel role for the transient receptor potential channel TRPM2 in prostate cancer cell proliferation

    Get PDF
    We have identified a novel function for a member of the transient receptor potential (TRP) protein super-family, TRPM2, in prostate cancer cell proliferation. TRPM2 encodes a non-selective cation-permeable ion channel. We found that selectively knocking down TRPM2 with the small interfering RNA technique inhibited the growth of prostate cancer cells but not of non-cancerous cells. The subcellular localization of this protein is also remarkably different between cancerous and non-cancerous cells. In BPH-1 (benign), TRPM2 protein is homogenously located near the plasma membrane and in the cytoplasm, whereas in the cancerous cells (PC-3 and DU-145), a significant amount of the TRPM2 protein is located in the nuclei in a clustered pattern. Furthermore, we have found that TRPM2 inhibited nuclear ADP-ribosylation in prostate cancer cells. However, TRPM2 knockdown-induced inhibition of proliferation is independent of the activity of poly(ADP-ribose) polymerases. We conclude that TRPM2 is essential for prostate cancer cell proliferation and may be a potential target for the selective treatment of prostate cancer
    corecore